
Package: ProjectTemplate (via r-universe)
August 30, 2024

Type Package

Title Automates the Creation of New Statistical Analysis Projects

Version 0.11.0

Date 2024-07-01

Description Provides functions to automatically build a directory
structure for a new R project. Using this structure,
'ProjectTemplate' automates data loading, preprocessing,
library importing and unit testing.

License GPL-3 | file LICENSE

Language en-US

LazyLoad yes

Roxygen list()

Encoding UTF-8

Depends R (>= 2.7), digest, tibble

Imports methods

Suggests foreign, feather, reshape, plyr, formatR, qs, stringr,
ggplot2, lubridate, log4r (>= 0.1-5), DBI, RMySQL, RSQLite,
gdata, RODBC, RJDBC, readxl, xlsx, tuneR, pixmap, data.table,
RPostgreSQL, GetoptLong, whisker, testthat (>= 3.0.0),
reticulate

URL http://projecttemplate.net

BugReports https://github.com/KentonWhite/ProjectTemplate/issues

Collate 'ProjectTemplate-package.R' 'add.config.R'
'preinstalled.readers.R' 'add.extension.R' 'addins.R'
'arff.reader.R' 'get.project.R' 'cache.R' 'cache.name.R'
'cache.project.R' 'clean.variable.name.R' 'clear.R'
'clear.cache.R' 'translate.dcf.R' 'config.R' 'create.project.R'
'create.project.rstudio.R' 'create.template.R' 'csv.reader.R'
'csv2.reader.R' 'db.reader.R' 'dbf.reader.R' 'epiinfo.reader.R'
'feather.reader.R' 'file.reader.R' 'list.data.R'
'load.project.R' 'migrate.project.R' 'migrate.template.R'

1

http://projecttemplate.net
https://github.com/KentonWhite/ProjectTemplate/issues

2 Contents

'mp3.reader.R' 'mtp.reader.R' 'octave.reader.R' 'ppm.reader.R'
'project.config.R' 'r.reader.R' 'rdata.reader.R' 'rds.reader.R'
'reload.project.R' 'require.package.R' 'run.project.R'
'show.project.R' 'spss.reader.R' 'sql.reader.R'
'stata.reader.R' 'stopifnotproject.R' 'stub.tests.R'
'systat.reader.R' 'test.project.R' 'tsv.reader.R'
'url.reader.R' 'wsv.reader.R' 'xls.reader.R' 'xlsx.reader.R'
'xport.reader.R'

RoxygenNote 7.3.1

Config/testthat/edition 3

Repository https://kentonwhite.r-universe.dev

RemoteUrl https://github.com/kentonwhite/projecttemplate

RemoteRef HEAD

RemoteSha 8dcfdc3bff89ea758709242995df4416528b147c

Contents

.add.extension . 3
add.config . 4
cache . 4
cache.project . 6
clear . 6
clear.cache . 7
create.project . 8
create.template . 9
get.project . 9
list.data . 10
load.project . 11
migrate.project . 12
migrate.template . 12
project.config . 13
reload.project . 15
require.package . 15
run.project . 16
show.project . 17
stub.tests . 17
test.project . 18
translate.dcf . 18

Index 20

.add.extension 3

.add.extension Associate a reader function with an extension.

Description

This function will associate an extension with a custom reader function.

Usage

.add.extension(extension, reader)

Arguments

extension The extension of the new data file.

reader The function to use when reading the data file. It should accept three arguments:
data.file, filename and variable.name (in that order). The function should
read the contents of the file filename, and save it into the workspace under the
name variable.name. The data.file argument is just a relative file name and
can be ignored.

Value

No value is returned; this function is called for its side effects.

Warning

This interface should not be considered as stable and is likely to be replaced by a different mecha-
nism in a forthcoming version of this package.

See Also

preinstalled.readers

Examples

Not run: .add.extension('foo', foo.reader)

4 cache

add.config Add project specific config to the global config

Description

Enables project specific configuration to be added to the global config object. The allowable format
is key value pairs which are appended to the end of the config object, which is accessible from the
global environment.

Usage

add.config(..., apply.override = FALSE)

Arguments

... A series of key-value pairs containing the configuration. The key is the name that
gets added to the config object. These can be overridden at load time through
the ... argument to load.project.

apply.override A boolean indicating whether overrides should be applied. This can be used to
add a setting disregarding arguments to load.project

Details

Once defined, the value can be accessed from any ProjectTemplate script by referencing config$my_project_var.

Examples

library('ProjectTemplate')
Not run:
add.config(

keep_bigdata=TRUE, # Whether to keep the big data file in memory
parse=7 # number of fields to parse

)

if (config$keep_bigdata) ...

End(Not run)

cache Cache a data set for faster loading.

Description

This function will store a copy of the named data set in the cache directory. This cached copy of
the data set will then be given precedence at load time when calling load.project. Cached data
sets are stored as .RData or optionally as .qs files.

cache 5

Usage

cache(variable = NULL, CODE = NULL, depends = NULL, ...)

Arguments

variable A character string containing the name of the variable to be saved. If the CODE
parameter is defined, it is evaluated and saved, otherwise the variable with that
name in the global environment is used.

CODE A sequence of R statements enclosed in {..} which produce the object to be
cached. Requires suggested package formatR

depends A character vector of other global environment objects that the CODE depends
upon. Caching will be forced if those objects have changed since last caching

... Additional arguments passed on to save or optionally to qsave. See project.config
for further information.

Details

Usually you will want to cache datasets during munging. This can be the raw data just loaded, or it
can be the result of further processing during munge. Either way, it can take a while to cache large
variables, so cache will only cache when it needs to. The clear.cache("variable") command
can be run to flush individual items from the cache.

Calling cache() with no arguments returns the current status of the cache.

Value

No value is returned; this function is called for its side effects.

See Also

qsave, project.config

Examples

library('ProjectTemplate')
Not run: create.project('tmp-project')

setwd('tmp-project')

dataset1 <- 1:5
cache('dataset1')

setwd('..')
unlink('tmp-project')
End(Not run)

6 clear

cache.project Cache a project’s data sets in binary format.

Description

This function will cache all of the data sets that were loaded by the load.project function in a
binary format that is easier to load quickly. This is particularly useful for data sets that you’ve
modified during a slow munging process that does not need to be repeated.

Usage

cache.project()

Value

No value is returned; this function is called for its side effects.

See Also

create.project, load.project, get.project, show.project

Examples

library('ProjectTemplate')
Not run: load.project()

cache.project()
End(Not run)

clear Clear objects from the global environment

Description

This function removes specific (or all by default) named objects from the global environment. If
used within a ProjectTemplate project, then any variables defined in the config$sticky_variables
will remain.

Usage

clear(..., keep = c(), force = FALSE)

clear.cache 7

Arguments

... A sequence of character strings of the objects to be removed from the global
environment. If none given, then all items except those in keep will be deleted.
This includes items beginning with .

keep A character vector of variables that should remain in the global environment
force If TRUE, then variables will be deleted even if specified in keep or config$sticky_variables

Value

The variables kept and removed are reported

Examples

library('ProjectTemplate')
Not run:
clear("x", "y", "z")
clear(keep="a")
clear()

End(Not run)

clear.cache Clear data sets from the cache

Description

This function remove specific (or all by default) named data sets from the cache directory. This
will force that data to be read in from the data directory next time load.project is called.

Usage

clear.cache(...)

Arguments

... A sequence of character strings of the variables to be removed from the cache.
If none given, then all items in the cache will be removed.

Value

Success or failure is reported

Examples

library('ProjectTemplate')
Not run:
clear.cache("x", "y", "z")

End(Not run)

8 create.project

create.project Create a new project.

Description

This function will create all of the scaffolding for a new project. It will set up all of the relevant di-
rectories and their initial contents. For those who only want the minimal functionality, the template
argument can be set to minimal to create a subset of ProjectTemplate’s default directories. For those
who want to dump all of ProjectTemplate’s functionality into a directory for extensive customiza-
tion, the dump argument can be set to TRUE.

Usage

create.project(
project.name = "new-project",
template = "full",
dump = FALSE,
merge.strategy = c("require.empty", "allow.non.conflict"),
rstudio.project = FALSE

)

Arguments

project.name A character vector containing the name for this new project. Must be a valid
directory name for your file system.

template A character vector containing the name of the template to use for this project.
By default a full and minimal template are provided, but custom templates can
be created using create.template.

dump A boolean value indicating whether the entire functionality of ProjectTemplate
should be written out to flat files in the current project.

merge.strategy What should happen if the target directory exists and is not empty? If "force.empty",
the target directory must be empty; if "allow.non.conflict", the method suc-
ceeds if no files or directories with the same name exist in the target directory.

rstudio.project

A boolean value indicating whether the project should also be an ’RStudio
Project’. Defaults to FALSE. If TRUE, then a ‘projectname.Rproj‘ with usable
defaults is added to the ProjectTemplate directory.

Details

If the target directory does not exist, it is created. Otherwise, it can only contain files and directories
allowed by the merge strategy.

Value

No value is returned; this function is called for its side effects.

create.template 9

See Also

load.project, get.project, cache.project, show.project

Examples

library('ProjectTemplate')

Not run: create.project('MyProject')

create.template Create a new template

Description

This function writes a skeleton directory structure for creating your own custom templates.

Usage

create.template(target, source = "minimal")

Arguments

target Name of the new template. It is created under the directory specified by options('ProjectTemplate.templatedir'),
or, when missing, in the current directory.

source Name of an existing template to copy, defaults to the built in ’minimal’ template.

get.project Show information about the current project.

Description

This function will return all of the information that ProjectTemplate has about the current project.
This information is gathered when load.project is called. At present, ProjectTemplate keeps a
record of the project’s configuration settings, all packages that were loaded automatically and all of
the data sets that were loaded automatically. The information about autoloaded data sets is used by
the cache.project function.

Usage

get.project()

Details

In previous releases this information has been available through the global variable project.info.
Using this variable is now deprecated and will result in a warning.

10 list.data

Value

A named list.

See Also

create.project, load.project, cache.project, show.project

Examples

library('ProjectTemplate')

Not run: load.project()

get.project()
End(Not run)

list.data Listing the data for the current project

Description

This function produces a data.frame of all data files in the project, with meta data on if and how the
file will be loaded by load.project.

Usage

list.data(...)

Arguments

... Named arguments to override configuration from config/global.dcf and lib/global.R.

Details

The returned data.frame contains the following variables, with one observation per file in data/:

filename Character variable containing the filename relative to data/ directory.
varname Character variable containing the name of the variable into which the file will be imported. *
is_ignored Logical variable that indicates whether the file. is ignored through the data_ignore option in the configuration
is_directory Logical variable that indicates whether the file is a directory.
is_cached Logical variable that indicates whether the file is already available in the cache/ directory.
cached_only Logical variable that indicates whether the variable is only available in the cache/ directory. This occurs when calling the cache function with a code fragment in a munge script.
reader Character variable containing the name of the reader function that will be used to load the data. Contains a character(0) if no suitable reader was found.

* Note that some readers return more than one variable, usually with the listed variable name as
prefix. This is true for for example the xls.reader and xlsx.reader.

load.project 11

Value

A data.frame listing the available data, with relevant meta data

See Also

load.project, show.project, project.config

Examples

library('ProjectTemplate')

Not run: list.data()

load.project Automatically load data and packages for a project.

Description

This function automatically load all of the data and packages used by the project from which it is
called. The behavior can be controlled by adjusting the project.config configuration.

Usage

load.project(...)

Arguments

... Named arguments to override configuration from config/global.dcf and lib/global.R.

Details

... can take an argument override.config or a single named list for backward compatibility. This
cannot be mixed with the new style override. When a named argument override.config is present it
takes precedence over the other options. If any of the provided arguments is unnamed an error is
raised.

Value

No value is returned; this function is called for its side effects.

See Also

create.project, get.project, cache.project, show.project, project.config

Examples

library('ProjectTemplate')

Not run: load.project()

12 migrate.template

migrate.project Migrates a project from a previous version of ProjectTemplate

Description

This function automatically performs all necessary steps to migrate an existing project so that it is
compatible with this version of ProjectTemplate

Usage

migrate.project()

Value

No value is returned; this function is called for its side effects.

See Also

create.project

Examples

library('ProjectTemplate')

Not run: migrate.project()

migrate.template Migrate a template to a new version of ProjectTemplate

Description

This function updates a skeleton project to the current version of ProjectTemplate.

Usage

migrate.template(template)

Arguments

template Name of the template to upgrade.

project.config 13

project.config ProjectTemplate Configuration file

Description

Every ProjectTemplate project has a configuration file found at config/global.dcf that contains
various options that can be tweaked to control runtime behavior. The valid options are shown below,
and must be encoded using the DCF format.

Usage

project.config()

Details

Calling the project.config() function will display the current project configuration.

The options that can be configured in the config/global.dcf are shown below

data_loading This can be set to TRUE or FALSE. If data_loading is on, the system will load data from both the cache and data directories with cache taking precedence in the case of name conflict.
data_loading_header This can be set to TRUE or FALSE. If data_loading_header is on, the system will load text data files, such as CSV, TSV, or XLSX, treating the first row as header.
data_ignore A comma separated list of files to be ignored when importing from the data/ directory. Regular expressions can be used but should be delimited (on both sides) by /. Note that filenames and filepaths should never begin with a /, entire directories under data/ can be ignored by adding a trailing /.
cache_loading This can be set to TRUE or FALSE. If cache_loading is on, the system will load data from the cache directory before any attempt to load from the data directory.
recursive_loading This can be set to TRUE or FALSE. If recursive_loading is on, the system will load data from the data directory and all its sub directories recursively.
munging This can be set to TRUE or FALSE. If munging is on, the system will execute the files in the munge directory sequentially using the order implied by the sort() function. If munging is FALSE, none of the files in the munge directory will be executed.
logging This can be set to TRUE or FALSE. If logging is on, a logger object using the log4r package is automatically created when you run load.project(). This logger will write to the logs directory.
logging_level The value of logging_level is passed to a logger object using the log4r package during logging when when you run load.project().
load_libraries This can be set to TRUE or FALSE. If load_libraries is on, the system will load all of the R packages listed in the libraries field described below.
libraries This is a comma separated list of all the R packages that the user wants to automatically load when load.project() is called. These packages must already be installed before calling load.project().
as_factors This can be set to TRUE or FALSE. If as_factors is on, the system will convert every character vector into a factor when creating data frames; most importantly, this automatic conversion occurs when reading in data automatically. If FALSE, character vectors will remain character vectors.
tables_type This is the format for default tables. Values can be ’tibble’ (default), ’data_table’, or ’data_frame’
attach_internal_libraries This can be set to TRUE or FALSE. If attach_internal_libraries is on, then every time a new package is loaded into memory during load.project() a warning will be displayed informing that has happened.
cache_loaded_data This can be set to TRUE or FALSE. If cache_loaded_data is on, then data loaded from the data directory during load.project() will be automatically cached (so it won’t need to be reloaded next time load.project() is called).
sticky_variables This is a comma separated list of any project-specific variables that should remain in the global environment after a clear() command. This can be used to clear the global environment, but keep any large datasets in place so they are not unnecessarily re-generated during load.project(). Note that any this will be over-ridden if the force=TRUE parameter is passed to clear()‘.
underscore_variables This can be set to TRUE to use underscores (’_’) in variable names or FALSE to replace underscores (’_’) with dots (’.’). The default is TRUE. When migrating old projects, underscore_variables is set to FALSE.
cache_file_format The default file format for cached data is ’RData’. This can be set to ’qs’ in order to benefit from the quick serialization of R objects provided by qs.

If the config/globals.dcf is missing some items (for example because it was created under an
old version of ProjectTemplate, then the following configuration is used for any missing items
during load.project():

data_loading TRUE
data_loading_header TRUE
data_ignore
cache_loading TRUE
recursive_loading FALSE
munging TRUE

14 project.config

logging FALSE
logging_level INFO
load_libraries FALSE
libraries reshape2, plyr, tidyverse, stringr, lubridate
as_factors FALSE
tables_type tibble
attach_internal_libraries TRUE
cache_loaded_data FALSE
sticky_variables NONE
underscore_variables FALSE
cache_file_format RData

When a new project is created using create.project(), the following values are pre-populated:

version 0.11.0
data_loading TRUE
data_loading_header TRUE
data_ignore
cache_loading TRUE
recursive_loading FALSE
munging TRUE
logging FALSE
logging_level INFO
load_libraries FALSE
libraries reshape2, plyr, tidyverse, stringr, lubridate
as_factors FALSE
tables_type tibble
attach_internal_libraries FALSE
cache_loaded_data TRUE
sticky_variables NONE
underscore_variables TRUE
cache_file_format RData

Value

The current project configuration is displayed.

See Also

load.project

reload.project 15

reload.project Reload or reset a project

Description

This function will clear the global environment and reload a project. This is useful when you’ve up-
dated your data sets or changed your preprocessing scripts. Any sticky_variables configuration
parameter in project.config will remain both in memory and (if present) in the cache by default.
If the reset parameter is TRUE, then all variables are cleared from both the global environment and
the cache.

Usage

reload.project(..., reset = FALSE)

Arguments

... Optional parameters passed to load.project

reset A boolean value, which if set TRUE clears the cache and everything in the global
environment, including any sticky_variables

Value

No value is returned; this function is called for its side effects.

Examples

library('ProjectTemplate')

Not run: load.project()

reload.project()
End(Not run)

require.package Require a package for use in the project

Description

This functions will require the given package. If the package is not installed it will stop execution
and print a message to the user instructing them which package to install and which function caused
the error.

Usage

require.package(package.name, attach = TRUE)

16 run.project

Arguments

package.name A character vector containing the package name. Must be a valid package name
installed on the system.

attach Should the package be attached to the search path (as with library) or not
(as with loadNamespace)? Defaults to TRUE. (Internal code will use FALSE by
default unless a compatibility switch is set, see below.)

Details

The function .require.package is called by internal code. It will attach the package to the search
path (with a warning) only if the compatibility configuration attach_internal_libraries is set
to TRUE. Normally, packages used for loading data are not needed on the search path, but not loading
them might break existing code. In a forthcoming version this compatibility setting will be removed,
and no packages will be attached to the search path by internal code.

Value

No value is returned; this function is called for its side effects.

Examples

library('ProjectTemplate')

Not run: require.package('PackageName')

run.project Run all of the analyses in the src directory.

Description

This function will run each of the analyses in the src directory in separate processes. At present,
this is done serially, but future versions of this function will provide a means of running the analyses
in parallel.

Usage

run.project()

Value

No value is returned; this function is called for its side effects.

Examples

library('ProjectTemplate')

Not run: run.project()

show.project 17

show.project Show information about the current project.

Description

This function will show the user all of the information that ProjectTemplate has about the current
project. This information is gathered when load.project is called. At present, ProjectTemplate
keeps a record of the project’s configuration settings, all packages that were loaded automatically
and all of the data sets that were loaded automatically. The information about autoloaded data sets
is used by the cache.project function.

Usage

show.project()

Value

No value is returned; this function is called for its side effects.

See Also

create.project, load.project, get.project, cache.project

Examples

library('ProjectTemplate')

Not run: load.project()

show.project()
End(Not run)

stub.tests Generate unit tests for your helper functions.

Description

This function will parse all of the functions defined in files inside of the lib directory and will gener-
ate a trivial unit test for each function. The resulting tests are stored in the file tests/autogenerated.R.
Every test is excepted to fail by default, so you should edit them before calling test.project.

Usage

stub.tests()

18 translate.dcf

Value

No value is returned; this function is called for its side effects.

Examples

library('ProjectTemplate')

Not run: stub.tests()

test.project Run all unit tests for this project.

Description

This function will run all of the testthat style unit tests for the current project that are defined
inside of the tests directory. The tests will be run in the order defined by the filenames for the
tests: it is recommend that each test begin with a number specifying its position in the sequence.

Usage

test.project()

Value

No value is returned; this function is called for its side effects.

Examples

library('ProjectTemplate')

Not run: load.project()

test.project()
End(Not run)

translate.dcf Read a DCF file into an R list.

Description

This function will read a DCF file and translate the resulting data frame into a list. The DCF format
is used throughout ProjectTemplate for configuration settings and ad hoc file format specifications.

Usage

translate.dcf(filename)

translate.dcf 19

Arguments

filename A character vector specifying the DCF file to be translated.

Details

The content of the DCF file are stored as character strings. If the content is placed between the back
tick character , then the content is evaluated as R code and the result returned in a string

Value

Returns a list containing the entries from the DCF file.

Examples

library('ProjectTemplate')

Not run: translate.dcf(file.path('config', 'global.dcf'))

Index

.add.extension, 3

add.config, 4

cache, 4
cache.project, 6, 9–11, 17
clear, 6
clear.cache, 7
create.project, 6, 8, 10–12, 17
create.template, 9

get.project, 6, 9, 9, 11, 17

library, 16
list.data, 10
load.project, 4, 6, 7, 9–11, 11, 14, 15, 17
loadNamespace, 16

migrate.project, 12
migrate.template, 12

preinstalled.readers, 3
project.config, 5, 11, 13, 15

qsave, 5

reload.project, 15
require.package, 15
run.project, 16

save, 5
show.project, 6, 9–11, 17
stub.tests, 17

test.project, 17, 18
translate.dcf, 18

20

	.add.extension
	add.config
	cache
	cache.project
	clear
	clear.cache
	create.project
	create.template
	get.project
	list.data
	load.project
	migrate.project
	migrate.template
	project.config
	reload.project
	require.package
	run.project
	show.project
	stub.tests
	test.project
	translate.dcf
	Index

